Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

$\mathrm{Li}\left(\mathrm{VO}_{2}\right)_{3}\left(\mathrm{TeO}_{3}\right)_{2}$

Magnus G. Johnston and William T. A. Harrison*
Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland Correspondence e-mail: w.harrison@abdn.ac.uk

Received 2 May 2007
Accepted 15 June 2007
Online 14 July 2007
The title compound, lithium tris[dioxidovanadium(V)] bis[trioxidotellurium(IV)], contains chains of edge-sharing distorted VO_{6} octahedra. The pyramidal TeO_{3} groups crosslink the chains into sheets. Finally, an Li^{+}cation adopting an unusual capped trigonal-bipyramidal LiO_{6} geometry bridges the layers to complete a three-dimensional structure.

Comment

The title compound, (I), is the second lithium vanadium tellurite to be characterized by single-crystal diffraction, complementing $\mathrm{LiVO}_{2}\left(\mathrm{TeO}_{3}\right)$ (Darriet, 1973). Although vanadium can occur in the III, IV and V oxidation states in inorganic solids (see, for example, Hung et al., 2002; Calin et al., 2003), both these compounds contain only vanadium(V) ions.

The constituent polyhedra for (I) are shown in Fig. 1 and selected geometric data are listed in Table 1. Atom V1 adopts a distorted octahedral coordination with respect to its six Oatom neighbours, with one characteristic short formal double $\mathrm{V}=\mathrm{O}$ 'vanadyl' bond $[\mathrm{V}-\mathrm{O}=1.582(5) \AA$] , four $\mathrm{V}-\mathrm{O}$ bonds of intermediate length, and one longer $\mathrm{V}-\mathrm{O}$ bond [2.325 (5) Å] trans to the $\mathrm{V}=\mathrm{O}$ bond. Atoms V 2 and V3 also

Figure 1
The asymmetric unit of (I), expanded to show the metal coordination polyhedra. Displacement ellipsoids are drawn at the 70% probability level. Symmetry codes are as in Table 1.
possess vanadyl links, with $\mathrm{V}=\mathrm{O}<1.6 \AA$ and four $\mathrm{V}-\mathrm{O}$ bonds in the range $1.75-2.03 \AA$. The sixth bond, trans to the vanadyl link, which completes the distorted octahedron for these atoms $(\mathrm{V}-\mathrm{O}>2.5 \AA)$, is substantially longer than the equivalent bond for V1.

These very distorted coordination polyhedra are highly characteristic of vanadium (V) and can be correlated theoretically with a second-order Jahn-Teller distortion (Kunz \& Brown, 1995) for this d^{0} metal ion. The bond-valence sums (BVS), in valence units, for V1, V2 and V3, calculated by the Brown (1996) method, are 5.10, 5.10 and 5.02 , respectively (expected 5.00).

Both $\mathrm{Te}^{\mathrm{IV}}$ atoms in (I) display pyramidal geometries with respect to their three closest O -atom neighbours, with $\mathrm{Te}-\mathrm{O}$ $<2.00 \AA$, and it is usually assumed that an unseen stereochemically active lone pair of electrons occupies the fourth tetrahedral vertex about Te (Wells, 1962). Te1 is displaced from the $\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{O} 3$ plane by 0.946 (3) \AA, and Te 2 is displaced from the O4/O5/O6 plane by 1.042 (3) \AA. However, as is typical for tellurium(IV) (Feger et al., 1999; Irvine et al., 2003), there are further O atoms with $\mathrm{Te} \cdots \mathrm{O}<3.00 \AA$ in the coordination spheres of both Te 1 and Te 2 . The shortest $\mathrm{Te} \cdots \mathrm{O}$ distance, viz. Te2-O11 = 2.557 (5) Å, might justify describing the Te 2 coordination as $3+1$ (Feger et al., 1999). The BVS for Te 1 are 3.74 (for the three close O atoms) and 4.10 (all O

Figure 2
The Li coordination in (I), drawn with 50% probability displacement ellipsoids. Symmetry codes are as given in Table 1.

Figure 3
Polyhedral representation of an [001] chain of edge-sharing VO_{6} octahedra in (I). Symmetry codes are as given in Table 1.
atoms within $3.0 \AA$). For Te2, BVS values of 3.83 (three $\mathrm{Te}-\mathrm{O}$ bonds $<2.0 \AA$), 4.03 (four $\mathrm{Te}-\mathrm{O}$ bonds $<2.6 \AA$) or 4.24 (six $\mathrm{Te}-\mathrm{O}$ bonds $<3.0 \AA$) arise.

Atom Li1 is surrounded by six O atoms within $2.5 \AA$. If the LiO_{6} polyhedron is not simply regarded as irregular, then a possible description is a monocapped trigonal bipyramid (Fig. 2), with the longest bond to O10 ${ }^{\text {i }}$ capping through the $\mathrm{O}^{3} / \mathrm{O} 4{ }^{\mathrm{ii}} / \mathrm{O} 5$ face [symmetry codes: (i) $x, y, z-1$; (ii) $-x,-y$, $-z]$. If the five O atoms forming the trigonal bipyramid are considered, a BVS of 0.88 arises for Li1 (expected $=1.00$). If $\mathrm{O} 10^{\mathrm{i}}$ is included in the calculation, BVS(Li1) rises to 0.95 . Thus, the Brown (2002) criterion that a ligand should contribute 4% of the metal valence to be considered as bonded is fulfilled.

The polyhedral connectivity in (I) results in edge-sharing chains of VO_{6} octahedra propagating along [001] (Fig. 3). Crystal symmetry requires that the V1 and V3 octahedra form inversion dimers, while the V2 polyhedron shares an edge with one V1 and one V3 octahedron. The edge-sharing V...V separations are: V1 $\cdots \mathrm{V} 1^{\text {iv }}=3.4207(16) \AA, \mathrm{V} 1 \cdots \mathrm{~V} 2^{\text {iv }}=$ 3.3169 (16) $\AA, \mathrm{V} 2 \cdots \mathrm{~V} 3^{\text {iv }}=3.7016$ (17) \AA and $\mathrm{V} 3 \cdots \mathrm{~V} 3^{\text {viii }}=$ 3.4858 (18) \AA [symmetry codes: (iv) $1-x,-y, 1-z$; (viii) $1-x,-y,-z]$. The $\mathrm{O}-\mathrm{V}-\mathrm{O}$ bond angles for the O atoms involved in the edge-shared links show substantial compression from 90°, falling in the range $70.51(7)-77.58(19)^{\circ}$.

When the Te atoms are considered as well as the V and O atoms, (010) sheets arise (Fig. 4) in the structure of (I). It is notable that Te 1 bonds to, or caps, a triangle of three vanadium polyhedra in the same edge-shared chain. A different triangular capping mode for a $\mathrm{Te}^{\mathrm{IV}}$ atom was observed in $\mathrm{Cs}\left(\mathrm{VO}_{2}\right)_{3}\left(\mathrm{TeO}_{3}\right)_{2}$ (Harrison \& Buttery, 2000), in which the three VO_{6} groups share corners. Although the title compound

Figure 4
Polyhedral representation of an (010) sheet in (I).

Figure 5
The unit-cell packing for (I), in polyhedral representation for the VO_{6} and LiO_{6} moieties.
and $\mathrm{Cs}\left(\mathrm{VO}_{2}\right)_{3}\left(\mathrm{TeO}_{3}\right)_{2}$ share the same stoichiometry and a 'capping' Te atom, they are otherwise structurally quite dissimilar.

Finally, when the Li atoms in (I) are also considered, a three-dimensional network arises (Fig. 5), with LiO_{6} groups bridging the (010) sheets, the key bond being Li1 $-\mathrm{O} 12^{\text {iii }}$ [symmetry code: (iii) $1-x, 1-y,-z$]. Significant [100] pseudo-channels are apparent in the structure, which probably accommodate the $\mathrm{Te}^{\mathrm{IV}}$ lone pairs. Thus, any free space accessible by other chemical species is limited.

Experimental

A mixture of $\mathrm{V}_{2} \mathrm{O}_{5}(0.7276 \mathrm{~g}, 4 \mathrm{mmol}), \mathrm{TeO}_{2}(0.3249 \mathrm{~g}, 3 \mathrm{mmol})$ and 1 M aqueous $\mathrm{LiOH}(7 \mathrm{ml})$ was placed in a 23 ml Teflon-lined hydrothermal bomb and heated at 438 K for 4 d , followed by cooling to room temperature over a period of a few hours. Upon opening the bomb, the solids were recovered by vacuum filtration, resulting in orange plates and shards of the title compound, accompanied by an as-yet unidentified orange-brown powder, in about a $50: 50$ ratio.

Crystal data

$\mathrm{Li}\left(\mathrm{VO}_{2}\right)_{3}\left(\mathrm{TeO}_{3}\right)_{2}$
$M_{r}=606.96$
Triclinic, $P \overline{1}$
$a=6.2370$ (4) \AA
$b=7.2005$ (5) \AA
$c=10.7066$ (8) \AA
$\alpha=92.868$ (4) ${ }^{\circ}$
$\beta=92.743(5)^{\circ}$

Data collection

Nonius KappaCCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.404, T_{\text {max }}=0.769$
$\gamma=105.524(4)^{\circ}$
$V=461.77$ (6) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
$\mu=9.23 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
$0.12 \times 0.10 \times 0.03 \mathrm{~mm}$

3858 measured reflections 1730 independent reflections 1499 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.050$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.089$
$S=1.02$
1730 reflections

163 parameters

18 restraints
$\Delta \rho_{\max }=1.71 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-1.93 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

Li1-O5	1.899 (12)	V3-O12	1.588 (5)
Li1-O3 ${ }^{\text {i }}$	2.049 (13)	V3-O10 ${ }^{\text {i }}$	1.755 (4)
Li1-O6 ${ }^{\text {ii }}$	2.119 (12)	V3-O4 ${ }^{\text {v }}$	1.885 (5)
Li1-O4 ${ }^{\text {ii }}$	2.277 (13)	V3-O5	1.980 (5)
Li1-O12 ${ }^{\text {iii }}$	2.411 (13)	V3-O11	2.014 (5)
$\mathrm{Li} 1-\mathrm{O} 10^{\text {i }}$	2.447 (14)	V3-O10 ${ }^{\text {iv }}$	2.634 (5)
V1-O7	1.582 (5)	Te1-O2	1.890 (5)
V1-O11	1.790 (5)	Te1-O3	1.892 (5)
V1-O2	1.899 (5)	Te1-O1	1.905 (5)
$\mathrm{V} 1-\mathrm{O} 1^{\text {iv }}$	1.974 (5)	Te1-O6 ${ }^{\text {vi }}$	2.741 (5)
V1-O8	1.992 (5)	$\mathrm{Te} 1-\mathrm{O} 7^{\text {vii }}$	2.764 (5)
$\mathrm{V} 1-\mathrm{O} 8^{\text {iv }}$	2.325 (5)	Te1-O1 ${ }^{\text {vi }}$	2.765 (5)
V2-O9	1.581 (5)	Te2-O5	1.873 (5)
V2-O8	1.762 (4)	Te2-O4	1.888 (5)
V2-O10	1.940 (5)	Te2-O6	1.901 (5)
V2-O3	1.943 (5)	Te2-O11	2.557 (5)
$\mathrm{V} 2-\mathrm{O} 6^{\text {iv }}$	1.964 (5)	$\mathrm{Te} 2-\mathrm{O} 1^{\text {vi }}$	2.801 (5)
V2-O11 ${ }^{\text {iv }}$	2.532 (5)	$\mathrm{Te} 2-\mathrm{O} 9^{\text {vii }}$	2.836 (5)

Symmetry codes: (i) $x, y, z-1$; (ii) $-x,-y,-z$; (iii) $-x+1,-y+1,-z$; (iv) $-x+1$, $-y,-z+1$; (v) $x+1, y, z$; (vi) $-x,-y,-z+1$; (vii) $-x+1,-y+1,-z+1$.

The $U^{i j}$ values for Li1 were restrained to approximate isostropic behaviour. The highest difference peak is $0.95 \AA$ from atom Te 2 and the deepest difference hole is $0.87 \AA$ from Te 1 .

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997), SCALEPACK and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service, University of Southampton, UK, for the X-ray data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC3051). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Calin, N., Serre, C. \& Sevov, S. C. (2003). J. Mater. Chem. 13, 531-534.
Darriet, J. (1973). Bull. Soc. Fr. Mineral. Crystallogr. 96, 97-99.
Dowty, E. (1999). ATOMS. Version 5.0.4 for Windows and Macintosh. Shape Software, Kingsport, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Feger, C. R., Schimek, G. L. \& Kolis, J. W. (1999). J. Solid State Chem. 143, 246253.

Harrison, W. T. A. \& Buttery, J. H. N. (2000). Z. Anorg. Allg. Chem. 626, 867870.

Hung, L. I., Wang, S. L., Kao, H. M. \& Lii, K. H. (2002). Inorg. Chem. 41, 39293934.

Irvine, J. T. S., Johnston, M. J. \& Harrison, W. T. A. (2003). Dalton Trans. pp. 2641-2645.
Kunz, M. \& Brown, I. D. (1995). J. Solid State Chem. 115, 395-406.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wells, A. F. (1962). Structural Inorganic Chemistry, 3rd ed., p. 890. Oxford University Press.

